LBM is a relatively new simulation technique for complex fluid systems and has attracted interest from researchers in computational physics. Unlike the
traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. Due to its particulate nature and local dynamics, LBM has several advantages over other conventional CFD methods, especially in dealing with complex boundaries, incorporating microscopic interactions, and parallelization of the algorithm. A different interpretation of the Lattice Boltzmann equation is that of a discrete-velocity Boltzmann equation. The numerical methods of solution of the system of partial differential equations then gives rise to a discrete map, which can be interpreted as the propagation and collision of fictitious particles.
The advantages are:
- The LBM method was designed from scratch to run efficiently on massively parallel architectures, ranging from inexpensive embedded FPGAs and DSPs up to GPUs and heterogeneous clusters and supercomputers (even with a slow interconnection network). It enables complex physics and sophisticated algorithms. Efficiency leads to a qualitatively new level of understanding, since it allows solving problems that previously could not be approached (or only with insufficient accuracy).
- The method originates from a molecular description of a fluid and can directly incorporate physical terms stemming from a knowledge of the interaction between molecules. Hence it is an indispensable instrument in fundamental research, as it keeps the cycle between the elaboration of a theory and the formulation of a corresponding numerical model short.
- Automated data pre-processing and mesh generation in a time that accounts for a small fraction of the total simulation.
- Parallel data analysis, post-processing and evaluation.
- Fully resolved multi-phase flow with small droplets and bubbles.
- Fully resolved flow through complex geometries and porous media.
- Complex, coupled flow with heat transfer and chemical reactions.
https://en.wikipedia.org/wiki/Lattice_Boltzmann_methods
Performance and Portability of Accelerated Lattice Boltzmann Applications with OpenACC - http://hgpu.org/?p=17029
Optimization of Lattice Boltzmann Simulations on Heterogeneous Computers - https://arxiv.org/abs/1703.04594
Lattice Boltzmann modeling of water-like fluids - http://journal.frontiersin.org/article/10.3389/fphy.2014.00022/full
No comments:
Post a Comment